Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation
نویسندگان
چکیده
Organic-inorganic membranes were obtained by stepwise modification of poly(ethyleneterephthalate) track membrane with nanoparticles of zirconium hydrophosphate. The modifier was inserted inside pores of the polymer, a size of which is 0.33 μm. Inner active layer was formed by this manner. Evolution of morphology and functional properties of the membranes were investigated using methods of porosimetry, potentiometry and electron microscopy. The nanoparticles (4 to 10 nm) were found to form aggregates, which block pores of the polymer. Pores between the aggregates (4 to 8 nm) as well as considerable surface charge density provide significant transport numbers of counter ions (up to 0.86 for Na(+)). The materials were applied to baromembrane separation of corn distillery. It was found that precipitate is formed mainly inside the pores of the pristine membrane. In the case of the organic-inorganic material, the deposition occurs onto the outer surface and can be removed by mechanical way. Location of the active layer inside membranes protects it against damage.
منابع مشابه
Formation of Zirconium Hydrophosphate Nanoparticles and Their Effect on Sorption of Uranyl Cations
Organic-inorganic ion-exchangers were obtained by incorporation of zirconium hydrophosphate into gel-like strongly acidic polymer matrix by means of precipitation from the solution of zirconium oxychloride with phosphoric acid. The approach for purposeful control of a size of the incorporated particles has been developed based on Ostwald-Freundich equation. This equation has been adapted for pr...
متن کاملComposite Membranes Containing Nanoparticles of Inorganic Ion Exchangers for Electrodialytic Desalination of Glycerol
Composite membranes were obtained by modification of heterogeneous polymer cation and anion-exchange membranes with nanoparticles of zirconium hydrophosphate and hydrated zirconium dioxide, respectively. The ion-exchange materials were investigated with the methods of electron microscopy, potentiometry, voltammetry, and impedance spectroscopy. Single nanoparticles, which were precipitated in aq...
متن کاملSynthesis and Characterization of Nanocomposite Ion Exchanger for the Removal of Heavy Metals
Among the conducting polymers, polyaniline (PANI) and polypyrrole (PPy) are the most popular. According to the Web of Science, more than 10,000 papers appeared in the past 30 years on various aspects of chemistry, physics, and engineering of PANI. This is due to the cheapness and easy availability of raw materials, ease of synthesis, good environmental stability, high electrical conductivity an...
متن کاملSynthesis and Characterization of Nanocomposite Ion Exchanger for the Removal of Heavy Metals
Among the conducting polymers, polyaniline (PANI) and polypyrrole (PPy) are the most popular. According to the Web of Science, more than 10,000 papers appeared in the past 30 years on various aspects of chemistry, physics, and engineering of PANI. This is due to the cheapness and easy availability of raw materials, ease of synthesis, good environmental stability, high electrical conductivity an...
متن کاملSynthesis and Characterization of Nanocomposite Ion Exchanger for the Removal of Heavy Metals
Among the conducting polymers, polyaniline (PANI) and polypyrrole (PPy) are the most popular. According to the Web of Science, more than 10,000 papers appeared in the past 30 years on various aspects of chemistry, physics, and engineering of PANI. This is due to the cheapness and easy availability of raw materials, ease of synthesis, good environmental stability, high electrical conductivity an...
متن کامل